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A Technique for Measuring Individual Modes

Propagating in Overmoded Waveguide

D. S. LEVINSON, MEMBER, IEEE, AND 1. RUBINSTEIN, MEMBER, IEEE

Abstracf—A practical measurement technique for determining

the relative amplitude and phase of the individual modes propagating

in overmoded waveguide is described. A phase-sensitive detector is

used to measure the output of fixed probes placed around a single

transverse plane in a section of enlarged waveguide. The detected

output is directly proportional to the modal components, and data

reduction is performed manually. The use of oversize waveguide

provides increased accuracy and permits total multimode power

measurements in conjunction with mode analysis. The technique

can be used for mode measurements up to the fourth harmonic in

standard rectangular waveguide. Experiments described in the paper

use a single frequency source. However, signal sources with spurious

content can be evaluated using appropriate tunable RF band-pass

filters.

lNTRODUC’rION

M

EASUREMENTS in waveguide containing two

or more propagating modes has received con-

siderable attention from microwave engineers

in recent years. This paper describes a practical tech-

nique for mode measurement that can provide rapid
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performance data on waveguide components subjected

to overmoded propagation of power.

An effective device or technique for measuring multi-

mode power must be able to determine the power in

each mode or measure the total power regardless of the

number of modes present. Both approaches have been

used by various independent investigators to measure

multimode power, and a number of techniques have been

developed for use with rectangular waveguide [1]- [6].

Of particular interest here is the technique reported by

Taub, based on the use of an enlarged section of wave-

guide [1]. This technique measures the total multimode

power in the waveguide without identification of, or

regard for, the individual propagating modes.

This paper describes a simple and practical measure-

ment technique for identifying the individual modes and

determining their relative amplitude and phase using

the same oversize waveguide as Taub. Whereas Taub’s

method requires enlarged waveguide as a basic com-

ponent, its use for mode measurements proves to be

advantageous from practical considerations rather than

being required by theoretical considerations.
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Some of the methods previously referred to for mea-

suring total multimode power do obtain, in effect, the

power in each mode. These include the methods of

Ferrer [2], Lewis [3], and Price [4]. Another method

for determining the modal content is presented by

Klinger [7].

Ferrer used a moving-probe assembly to measure the

amplitude and phase of the electric field at the walls of

a standard-size rectangular waveguide. Using computer

techniques to perform a Fourier analysis of the measured

data, the power contained in each propagating mode

was calculated. Although the method is theoretically

sound, computer data reduction is considered imprac-

tical in many applications. Also, the sliding probe in-

hibited the voltage breakdown level of the waveguide.

Lewis used a series of mode couplers that selectively

coupled a given mode to its own output port. By cali-

brating the couplers it was possible to measure the

power contained in each mode. The usefulness of this

method, however, is limited to frequencies below which

no more than five or six modes can propagate. Also, the

couplers had a usable fractional bandwidth of only about

ten percent.

Price’s method is essentially the same as that used by

Ferrer except that the measured data is obtained using

a series of fixed probes inserted through two walls of

the waveguide. Although better high-power capabilities

resulted, computer data reduction was still necessary.

Also, the computer program enhances the probability

of large errors even for small errors in the probe

readings.

Klinger used a method that required the measurement

of the variation in the input SWR as a function of the

position of a short-circuiting piston in the multimode

waveguide. The modes were identified by observing the

shape and spacing of the absorption resonances. This

method assumes that the modes other than the funda-

mental mode are relatively small in amplitude. This as-

sumption plus the requirement for a short-circuit

termination restricts its use to a few select types of

measurements.

With the mode measurement technique described

here, sufficient data is obtained at a single cross section

of the oversize waveguide (by sampling the fields at all

four \valls) to determine all modes up to the TEZZ mode.

This permits measurements from the fundamental to

the upper portion of the third harmonic region. By

applying practical considerations, this range can be ex-

tended to the fourth harmonic region.

Single-plane measurements are made possible using

a phase-sensitive detector whose output is directly

proportional to the sampled field amplitude multiplied

by a relative phase factor. This eliminates the require-

ment for an independent phase measurement and a

possible source of error.

When the relationships between the mode compo-

nents and the phase-sensitive detector output voltages

have been compiled for any particular measurement,

the final data reduction to which the measured va’lues

are applied involves only algebraic addition. Depending

on the number of possible propagating modes, the dlata

reduction for first-order mode determinaticms can be

accomplished manually in 10 to 20 minutes. First-

order determinations yield the relative amplitude and

phase of each mode without distinguishing between TE

and TM modes. When it is necessary to separate these

degenerate modes (second-order mode determination),

relatively little additional data processing is required

using the original data. The functional relationships

between the measured data and the mode components

are derived by considering only the total number of

propagating modes. These can then be used with

measurements performed in any size waveguide at the

appropriate frequency.

Since the phase-sensitive detector is a balanced de-

vice, its dynamic range is limited by practical considera-

tions to slightly better than 20 dB. This results in some

amplitude value being computed for all possible prclpa-

gating modes even though no energy is contained in

some modes. With a well-balanced detector, however,

the apparent measured amplitude of nonpropagating

modes will be at least 20 dB below the highest prcjpa-

gating mode amplitude determined. When using this

technique, it is the practice to discard those mode:s as

nonpropagating whose amplitudes fall below the 2C~-dB

limit. By this procedure individual mode amplitudes can

be determined with accuracies better than + 0.5 d]!].

The use of oversize waveguide for the probe section

provides a number of advantages. First, all modes

propagate at about the same phase velocity as opposed

to the dispersive property of standard-size waveguide.

This considerably reduces the fabrication prolblems asso-

ciated with probe alignment and increases the inherent

accuracy of the measurements. Also, as shown in

Levinson and Worontzoff [8], the oversize probe section

does not degrade the power handling capability of the

standard-size waveguide system being measured.

An obvious feature of using enlarged waveguicle is

that total multimode power measurements can be lper-

formed along with individual mode measurements. This

feature made it possible to check the accuracy of the

mode measurement method to account for total power

by summing the power in each mode. In alll cases, the

summation of the modal powers agreed with the t:otal

measured power by better than A 1.5 dB.

The instrumentation described for mode measure-

ments is compatible only with CW signal sources, either

single frequency (signal generator) or containing spuri-

ous outputs. With the latter appropriate filters must be

used as shown in Fig. 1.

This paper presents the theoretical basis for the tech-

nique as well as examples and results of experimental
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Fig. 1. Mode measurement setup.

work. A sample computation table is also derived to

illustrate practical use of the theory when applied to a

specific measurement. Second-order mode determina-

tions are discussed and an example is presented.

MODE MEASUREMENTS

Mode measurements are performed using the equip-

ment shown in Fig. 1. The taper, probe section, and

load are discussed in detail in Hinckelmann et al. [9].

Except for the phase-sensitive detector, the remaining

components are standard laboratory equipment. A di-

rectional coupler is shown used in this setup to supply

the reference signal, but a reference probe could be used

as was done by Price [4]. The use of a single local oscil-

lator source for both the reference and signal mixers en-

sures relative phase coherency without placing stringent

stability requirements on the equipment.

A schematic diagram of the phase-sensitive detector

is shown in Fig. 2. The theory and design parameters of

the detector are described in Krishnan [11]. The opera-

tion of the detector can be outlined briefly as follows.

With a reference signal V~ [~, and a signal VS L~g

fed into their respective ports in the detector, the out-

put voltage is given by

v.., = I V,s I Cos (C& – @r) (1)

providing that I V~ ] > I V,SI .

In the actual measurement setup, the reference signal

JULY

is maintained at a minimum level of 6 dB above the

strongest signal being sampled.

Since we are only concerned with relative phase data,

the reference phase can be arbitrarily chosen so that

@,= O. The output of the detector is then written simply

as

v.., = I V-s I Cos $+% (2)

Using the quadrature line shown in Fig. 1, the de-

tector can be used to obtain data with a quadrature

phase relationship to the output given by (2). By switch-

ing to this line, an additional quarter wavelength is in-

serted in the reference arm of the detector so that the

output relative to (2) is given by

Vou’=‘v”Cos(@s-i)=Iv”‘inos ‘3)

The detector output recorded with the line bypassed

is arbitrarily termed the ‘(in-phase” value; the output

recorded with the line inserted is termed the “quadra-

ture” value. These two measurements at each probe

constitute the required measured data. The number of

probes required is determined by the highest mode index

being considered. Generally, m probes are required on

each broad wall and n probes on each narrow wall. The
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output from the detector is read on a digital voltmeter

used in the floating ground mode, and the sign of the

output voltage is recorded along with its magnitude.

The measurement setup can be checked for balance

and accuracy by performing a mode measurement at a

frequency where only the dominant mode can propagate

while assuming the presence of two modes. The re-

sultant amplitude value of the known nonpropagating

mode is a direct measure of the system accuracy. In a

satisfactory setup, this value should be at least 20 d B

down from the amplitude of the dominant mode.

EXPERIMENTAL RESULTS

All mode measurements were performed on S-band

components (WR-284) at a signal frequency of about

7.0 GHz. The first test conducted was a check of the

mode conversion that takes place due to the tapers,

which would be used on all subsequent tests. Figure 3

shows the waveguide components comprising the system

to be tested.

In this setup, energy was launched into the system

using the appropriate waveguide-to-coa.x adapter for the

desired signal frequency. One taper was used to mate the

adapter to a straight piece of S-band waveguide, and a

second taper was used to mate with the oversize probe

section. In later tests, the component whose mode con-

version properties were to be tested replaced the straight

section of waveguide.

Since the transition was excited in-band, a dominant

mode would be launched, and any measured mode con-

version would be
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the result of the tapers or flange misa-

lignment. The results of mode measurements ~n this

system are shown in Fig. 4. All the relative mode ampli-

tudes computed are shown. When the 20-d B limit is

applied and all modes below this level discarded as non-

propagating, only the dominant mode exists. Without

any adjustments in the calibrations due to ,discarding

the other modes, the total power is accounted for to

within 3.4 percent of its true value. Thus, a measure of

the accuracy of the system is obtained.

With this setup a dominant mode can be launched

incident on any device inserted in place of the straight

section. Any modes generated will be due tc) only the

device being tested.

An inductive iris was fabricated (Fig. 5) and inserted

in the line. With an incident dominant mode, Fig. 6

shows the measured mode conversion for th~is device.

Note that the principal higher-order mode is the TE20.

The propensity for this device to convert an incident

TE1o mode into the TE,, mode is predicted qualitatively

by Southworth [12].

A standard 90-degree E-plane bend was inserted in

the line, and the results of mode conversion to an inci-

dent dominant mode are shown in Fig. 7. Note that

74 percent of the power was converted into the TI\l n

mode, with only 19 percent of the power remaining in

the dominant mode. The fact that this device favors

propagation in the TM N mode at out-of-band frequen-

cies has been observed previously by other investi-

gators [13].
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The ability to use the mode measurement technique

to check the performance of devices designed to support

or suppress certain modes was demonstrated by mea-

suring the output of a TE20 mode launcher (Fig. 8). The

measured output is shown in the same figure. This

launcher is a fairly good device with 80 percent of the

propagating energy being contained in the TE90 mode.

A standard S-band transition was connected directly

to the straight section of S-band waveguide (Fig. 9A)

and excited at a test frequency of 7.07 GHz. For this

device, an exact theoretical analysis was performed of

the primary mode conversion to be expected using

methods outlined by Felsen [14]. The analysis indi-

cated that the TESO mode would be favored and that its

amplitude relative to the TEIO mode would be greater

by about 8 dB. Figure 10 shows that the TEao mode

amplitude does in fact exceed that of the dominant

mode by about 6 dB.

Figure 9B shows the setup used in the previous test

with the probe section and load removed. The remaining

system then becomes a radiating system with the taper

being used as a horn antenna. The mode measurements

obtained in the previous test were translated from the

plane of the probes to the plane of the taper to describe

its overmoded aperture illumination. This data was then

applied to farfield primary pattern prediction tech-

niques described in Levinson [10], and the radiation

pattern was sketched.

The actual radiated pattern from the system was

then measured in the far field for the horn at the test

frequency. The measured pattern is shown compared

with the predicted pattern in Fig. 11. The two patterns

agree to within one degree in angle at the nulls, and to

within 3 dB in relative amplitude at the peaks of the

main lobes.
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THEORETICAL CONSIDERATIONS

This portion of the theory outlines the basic detec-

tion scheme using the phase-sensitive detector. Other

considerations in applying the theory to actual mea-

surements are treated in the next section.

RF Output from Electric Field Probe in Ovewnoded Guide

Figure 12 shows a typical probe section that can be

used for both mode measurements or total power mea-

surements. Standard coordinates are used to describe

the position of each wall, and the transverse measure-

ment plane is taken at z = O along the waveguide.

From standard waveguide theory, the electric fields

in the guide perpendicular to the broad and narrow

walls can be written for any number of modes as follows:

( inn-x
~V=~~ A.. sin —

)

Ynry
Cos —

?n=l /?=0 a b

( Wiry
~z=~~ B.. sin —

)

mfrx
Cos —

m=o fi=l b a

(5)

The RF output from a probe placed along the broad

wall in the y = O plane is written from (1) by setting

y and z = O, and x = xl to denote the actual probe posi-

tion between the walls x = O and x = a. The RF fre-

quency (wt) can be combined with 8~. in the following

discussion since it is a constant for all the modes. With

these considerations, the probe output is given by

m-?rxl)~.l., = ~ ~ (A..sin— eqJO~.. (6)
m=l .=O a

To simplify the notation, let the quantity

m7rxp
sin — s=IUP. (7)

a

This term is a constant multiplier for each mode once

the actual probe position is selected.

By expanding (6) around m =1, 2, 3, . . ., and re-

grouping, the probe output is written in the more con-

venient form:

Z=O n=o

n

fl=o
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Fig. 12. Typical probe section with coordinate system.

Since the probe output is a vector quantity, it can be

expressed in terms of its real and imaginary com-

ponents as follows:

~ulzl = 1 ~Vlz,l (cos++j sin*)

—— Re (~u IJ +j Im (~Y Iw) (9)

where

n=o 7L=0

%
i- msl x Am Cos 0.. (10)

n=o

7L=0 ‘n=()

-+ i$I k A.. sinO~~. (11)
%=0

The RF output from a probe placed on a narrow wall

of the waveguide is obtained in a similar manner.

If a standard amplitude detector (crystal, bolometer,

etc.) were connected to the probe at x = xl, the output

would be a measure of the amplitude of ~U 12,. The am-

plitude is obtained by forming the square root of the sum

of the squares of the real and imaginary components

given in (10) and (1 1). Without actually writing out

this quantity, it can be seen that the amplitude will

contain a number of cross-product terms depending on

the number of modes. From data obtained at only a

single cross section of the waveguide, the terms com-

prising the cross products are inseparable. It. is eviclent,

then, that a standard detector cannot be used with this

mode measurement method.

Application of Phase-Sensitive Detection

When the phase-sensitive detector, previously de-

scribed, is connected to the sampling probe located at

~ = xl, the output of the detector is proportional to

either the real or imaginary part of the sampled fiend as

they are given in (9) and defined in (10) and (11). 130th

components, real and imaginary, are composed of a

linear combination of the individual mode terms. Thus,

the phase-sensitive detector yields a direct measure of

this linear mode sum. By repeated measurements at

other probes located in the same transverse plane, a

system of linear simultaneous equations results. These

can be solved for each mode term as a function of the

phase-sensitive detector voltages. The following ex-

ample illustrates this process.

Application of Theory (Simple Two-Mode Case)

Consider a simple case of mode measurements per-

formed at a frequency where only two modes are capa-

ble of propagating in the waveguide. In standard

rectangular waveguide, the first two modes are the

TEIO and TEZO, The relationship between the modes and

the phase-sensitive detector output voltages are derived

as follows. From (10) and (1 1), the mode sums for this

example become
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Re (Eu IJ = JIA 10 cos O1O+ 2SIfl Z0 cos 020 = ~n (12)

Im (Ev IJ = P$IA 10 sin 010 i- SI~ZO sin 020 = VQ1. (13)

These sums are shown equated to the “in-phase” and

“quadrature” detector output voltages from measure-

ments at probe 1. With measurements repeated at a

second probe on the same broad wall of the waveguide,

the following mode sums result:

Re (Ev IJ = J’ZA 10 cos 010 + 2SZA ZOcos OzO= VIZ (14)

h (E. Iq) = l~Zz410 sin Olo + ZSZ.4Z0 sin ~zo = ~Q2. (1S)

Note that in these last expressions for the output at

the second probe, only the constants ~Sp have changed.

These constants account for the transverse field dis-

tribution of the modes with which they are associated

[see (7) ].

By considering each mode amplitude times its phase

factor as a single term, the four equations comprise a

double set of linear simultaneous equations that are

solved as follows:

A 10 Cos 010 = f(#P, Vrl, vr2) = Mlo (16)

.4 ~11Cos 020 = g(JP, VI1, Vrz) = M20 (17)

A lo sin 010 = ~(Jp, VQI, VQ2) = NIO (18)

A 20 sin 020 = g(sr, ~Ql, VQ2) = A720. (19)

The relative amplitudes and

are then obtained as follows:

A 10 = V’(M1O)2 + (Nlo)’

A20 = ti(M20)2 + (IV20)2

Comments on Example

phases of the two modes

NIO
010 = tan–l —

Mlo

(20)

N20

1920 = tan–l —
Mzo

. (21)

For simple cases of mode measurements, data from

only one broad wall and one narrow wall (if required)

are sufficient. This is true only when all the possible

propagating modes have one mode index equal to zero.

This condition is satisfied for the first three modes in

both WR284 and WR650 waveguides. In general, data

from all four walls are required. For any particular

measurement, the number of probes on each broad and

narrow wall is determined by the highest m and n mode

index, respectively.

COMPUTATION TABLE

This section is concerned with deriving a typical

computation table for use with mode measurements.

The example is performed at the theoretical upper limit

of this technique to illustrate the manner in which the

limitation is imposed and to point out practical details

that arise when deriving the mode component/output

voltage relationships.

General Form of Mode-Sum Equatiom

For this example, assume that measurements are de-

sired in S-band waveguide just at the cutoff frequency

of the TEZZ mode, 9.739 GHz. Although this mode can

be ignored as nonpropagating, it will be included in the

initial steps to illustrate the limiting properties of the

technique.

In deriving this table, only the TE mode notation

will be used and, where applicable, will represent the

sum of a TE and TM mode. The separation of these

modes is discussed in the next section.

The most useful way to represent the general mode-

sum equations is in matrix form, For one broad wall, the

matrix is given by

15’1 2s1 ““”?nsl’

1s2 2s2. ..?S2. .
,.

lSP 2.iP”””?#iP
. .

. .

. .

U’Sm Zsm. ..dm

where

J’p. sin.?K2,
a

y(r,~)~

Y(I,Q)2

Y(I,Q)P

y(r,Q)m

——

V(I,Q)l

V(I,Q)2

V(I,Q)P

, v(I,Q)r,

(22)

P = probe number 1, 2, 3 . . . m,

~(r,Q)p = detector voltage at probe P (in-phase or quadrature),

The matrix used for the opposite wall is identical to

(22) except for 1) the definition of the summations given

by Y, and 2) a minus sign preceding all measured volt-

ages noted by V.

Using primes to denote values for the opposite wall,

the sums are defined by

Y’(I,Q}P= ~ (–l)”~pn ()Cos
op.. (23)

n=o sin

The need to define the summations differently is due

to the relative phase reversal of the electric field of cer-

tain modes between opposite walls. The Ev field com-

ponent of modes with an odd n index experiences a

phase reversal between opposite broad walls of the

guide, and the E. field component reverses its phase

between the narrow walls for modes with an odd m index.

The minus sign preceding the measured voltage val-

ues for the opposite wall accounts for the physical inver-

sion of the probes. In the actual measurements, it makes

no difference which wall is noted—top or bottom or left

or right—as long as a consistent reference is used.
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For the narrow walls of the waveguide, a matrix

similar to (22) is used as given below:

where

mryv
~sp = sm — 9

b

‘%(l,Q)I)

‘(I,Q)P =

.x(I,Q)n,

V(I,Q)l

‘(r,Q)P

‘(~,Q)n

(24)

$ = probe number 1, 2. 0 ~ n,

v (r ,Q)p = detector voltage at probe j (in-phase or quadrature),

As with the opposite broad-wall matrix, the opposite

narrow-wall matrix is identical to (24) except that a

minus sign precedes the measured voltages noted by v,

and the summation given by x is defined by

o&iQ,, = ~ (–l)~B~P co’ O~P. (25)
m-o sin

Probe Section

‘I’he highest mode indexes being considered in this

example are m = 4 and n =2. The probe section then will

have four probes on each broad wall and two probes on

each narrow wall of the waveguide. Assume that the

probes are positioned as follows.

Along the broad walls:

PI is positioned at *I = ~

3a
P2 is positioned at X2 = ~

5a
P3 is positioned at X3 = ~

7a
P4 is positioned at X4 = ~ -

Along the narrow walls:

pl is positioned at yl = ~

j2 is positioned at y~ = ~ .

Matrix Solutions

Using the values given for the probe positions in

matrix equations (22) and (24), and the in-phase nota-

tion, the matrixes become

—

()(<2 – -@) – : (-2 + dz)(–1)

.

‘G)(%3’X1”‘v’;
(3(3. ?2,= 3 “ ’27)

Y,rl‘1
Y,r2

Y,r3 I

Yr4
J

VII

V12

(26)

VI,

V14

J

Solving the above for Y and x, we get

+ <2 + <2 (v,, + vr3)]

Y12 = + [v,, + V12– V,3– V,4]

(28)

(29)

1
Y13 = ~ [<2 + @ (VII+ vr4)

—.

– d2 – /2 (V,2 + Vn)l (30)

YI, = + [Vn – V12 + VI, – VI,] (31)

1[ 1‘“ = z ‘“+ ‘r’
(32)

i [ 1.‘“ = z ‘“– ‘“
(33)
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The solutions using quadrature measurements are

obtained by merely changing the subscripts. Also, these

same solutions hold when opposite wall data is used by

changing the sign preceding each measured value noted

by V and v.

Equations (28)–(33) represent the first entries in the

computation table. It is seen that the values for Y and

x are obtained by the algebraic addition of the detector

output voltage at each probe.

Mode Sums and Separation

The next step in deriving the table is to form the

relationships between the individual mode terms and

the computed values of }“ and cc as given above. This is

done by writing out the mode sums according to (22)-

(25). This is done below for all four walls using the

in-phase notation.

From (22):

YII = Ala Cos 010+ All Cos 011 + .412 Cos 012 (34)

Y12 = A ~~Cos 020+ A21Cos 021 + (.422 Cos 6’22) (35)

Yrs = A30 Cos 030 + A31 Cos 631 (36)

YId = A40 COS040 + A41 COS.941. (37)

From (23):

Yrl’ = ~lo COS010 – .411 COS611 + Au COS012 (38)

yJ2’ = A,. COS @,o – ~,, COS d,, + (A,, COS 022) (39)

Frt’ = .4s0 cos 133(1— A~l COS & (40)

Y14’ = A40 COS 6’411— A41 COS 041. (41)

From (24):

X“I1 = BO1 COS 801 + Bll COS 611 + Bzl COS 021

+ BU COS & + B41 COS 041 (42)

.trl = B02 COS & + B12 COS 612 + (Bza COS 022). (43)

From (25):

%T1’ = Bol COS t?o~ – Bll COS 011 + B21 COS &

— B31 COS 031 + B41 COS o~l (44)

%12’ = BOZ COS O~Z– Blj COS OIZ + (Bgz COS 0z2). (45)

The method for separating each mode term is to com-

bine the mode sum expressions for opposite walls. For

example, by adding and subtracting (37) and (4 I), the

TE40 and TEA1 mode elements are separated. This

process is repeated for all the sums until each mode

element is separated.

For those sums containing more than two terms, the

fixed relationship between orthogonal field amplitudes

for the same mode is used to effect the final separation.

These are given by

A m. mb
for TE modes

B ‘na
(46)

Inn

‘4 nln na
for TM modes.

B ‘mb
(47)

m.

For the first-order mode determinations, (46) is used.

All the terms in the sums can be separated, using

these considerations, but only if the TE2z mode is

dropped from the equations. No amount of manipula-

tion can cause this term to be expressed independently

because in all the equations it appears as a third term.

The method of separating the modes depends on the

fact that each mode element appears either singly or in

pairs in at least one set of equations. Thus, the mode

measurement technique is limited to the determination

of modes below the TEZ2,. If practical considerations de-

termine that negligible energy is contained in modes with

even n indexes, this term plus the TESZ and TE4J can be

ignored. The technique can then be extended beyond

the fourth harmonic region for mode determinations

up to the TEIS mode. As the experimental data shows,

the assumption for extending the frequency range is

valid for most standard waveguide systems.

Final Mode Element Relationships

When all the mode elements are separated in the man-

ner indicated, the following relationships result:

1 b
Alo Cos 610 = ; (Frl + 1’11’) – ~ (*12 – X12’) = Mlo

1
.411 Cos 611 = ; (Yrl – Yrl’) = Mll

1
.420 Cos %2,0= ~ ( Yr2 + Y12’) = Mxl

1
.421 Cos 021 = > (Yrz – Y12’) = M21

1
.430 Cos 030 = ~ (1713 + Y13’) = M30

1
.440 Cos 040 = ~ ( F14 + YT4’) = M40

1
A41 COS 041 = ~ ( ~14 – Y74’) = &fu

b

BI)I COS 601 = : (~11 + XI;) + — (Y12 + Y12’)

a

2b
+ ; ( Y14 – YT4’) = Cal

1
30’2 Cos 00’2 = ~ (ZZ2 + Z12’) = C02

1
Blz COS 012 = ~ (.TIj – *Iz’) = Clz. (48)

A similar set is compiled for the quadrature data by

interchanging sine for cosine and the subscript Q for I.

To indicate the notation, two terms in that set would be
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.-III sin 011 = ~ (VQ1 – I“QI’) = Nll

1
BOZ Sk (& = ~ (%Qz + $Qz’) ‘= DOZ. (49)

The relative amplitude and phase of each mode is

then determined, as was done in (20) and (21), with the

notation as shown below:

- m = ti(lf~,l)’ + (.47..)2 d~a = lan-’ ~1
Mm.

(50)

B m, = <(C~~)’ + (D~~)2 Oti,~ = tan-’ ~ . (51)
?n?l

Final Details of Table

Equations (48)–(51) complete the elements for the

computation table. The following steps summarize the

computation procedure.

1)

2)

3)

4)

Obtain measured in-phase and quadrature data at

each probe on all four walls.

Solve (28)–(33) using the measured values.

Determine the value of each mode element accord-

ing to (48) and (49) using the values obtained

step 2.

Calculate the relative amplitudes and phases

in

of

each of the modes as given by (50) and _(51).

Examp[e of Results from Mode Measurements

The following table shows the calcul,ated mode ampli-

tudes for first-order mode determinations using data

obtained in an actual test at a signal frequency com

patible with the table derived in the preceding example.

Calculated Relative
Mode Index Amplitude Amplitude

(mV) (dB)

*lo 174.0 –~ o
20

01

*11

-i9. s

30:::

-..
–28.8
–37.3

–1.2
21 14.0

*3O
–32.1

347.0
*31 93.5

40
–1!.4

18.0 –29.6
02 20.6 –28.2

6.6 –39.6
:? 7.4 –38.4

By applying the 20-dB limit, it is seen that only four

propagating modes exist (denoted by asterisks) and

that the majority of the power is contained in the TE30

mode. Since a significant portion of the total power is

contained in a mode which can exist in either or both the

TE and TM modal configurations, the (TE, TM)lI, it

might be desired to perform a second-order determina-

tion to obtain the amplitude of each mode. The method

for doing this will be discussed in the next section.

SECOND-ORDER MODE DETERMINATION

The separation of TE and TM modes is similar tc, the

method of separating the elements in the mode sums for

first-order mode determination. This separation, second-

order determination, is logically the final step in any

mode measurement.

In general, all modes having one index equal to zero

can exist only in the TE configuration, wlhile modes

having nonzero m and n indexes can exist in either the

TE, Thl, or both modal configurations simultaneously.

When separation is desired, it is assumed that both

modal configurations exist, and the following procedure

is used to determine their relative amplitudes.

Separation Procedure for TE1l and T&lll Modes

Using the experimental results given, the appropriate

expressions containing the (TE, TM)lI mocle in (34) -

(45) are modified to indicate the existence of both types

of modes.

In (52) and (53), the minus sign accounts fcm- the anti-

phase property of the fields perpendicular to the broad

walls for the two types of modes. The fields of the two

types of modes perpendicular to the narrow walls are

in-phase.

By combining pairs of equations as before, we get

and from (46) and (48),

a MU

()

c31=7—
3“

(58)

By using (46) and (47), the narrow-wall a.mplitucles

of the two modes can be expressed in terms of the broiad-

wall amplitudes. Applying this to (57), we get

Equations (56) and (59) are then solved to separate

each of the modes.

—~–— [Cll + (b/a) i14’11] (60)
‘TE” Cos O’rE” = (a/b+ b/a)
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1
J4T~fII Cos‘TM1l= (a/b + b/a) [C,, – (a/b) M,,]. (61)

A similar set of equations can be written for use with

the quadrature data from (60) and (61) by replacing

the cosine with sine, Cll with D1l, and MII with Nil.

DU = ;(*Q1 – *Q;) – D31 (62)

and

(63)

The individual mode amplitudes and phases are then

obtained by the trigonometric identities, as was done

before in (50) and (51), using the appropriate values

calculated by the procedure outlined,

CONCLUSIONS

A practical technique for measuring the individual

modes propagating in overmoded waveguide has been

described, The use of fixecl electric field probes mounted

in enlargecf Waveguide provides for increased accuracy

and permits total multimode power measurements using

the technique presented by Taub [1].

By employing phase-sensitive detection, simple volt-

age measurements are required at only a single trans-

verse plane. The data processing to determine the rela-

tive amplitude and phase of each mode can be carried

out manually. A computation table was derived which

facilitates this manual data reduction.

The experimental results presented were intended

to demonstrate various measurement setups that can

be used to measure the performance of standard wave-

guide components, or specially designed components

intended for use in overmoded waveguide. The success-

fu1 application of the technique to obtain data of over-

moded aperture illumination for use with antenna pat-

tern prediction methods was presented.
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